Mathematics C3

1. (a) 0 1

$$\pi/12$$
 0.933012701
 $\pi/6$ 0.75
 $\pi/4$ 0.5 (5 values correct) B2
 $\pi/3$ 0.25 (3 or 4 values correct) B1
Correct formula with $h = \pi/12$ M1
 $I \approx \frac{\pi/12}{3} \times \{1 + 0.25 + 4(0.933012701 + 0.5) + 2(0.75)\}$
 $I \approx 8.482050804 \times (\pi/12) \div 3$
 $I \approx 0.740198569$
 $I \approx 0.7402$ (f.t. one slip) A1

Note: Answer only with no working shown earns 0 marks

(b)
$$\int_{0}^{\pi/3} \sin^{2}x \, dx = \int_{0}^{\pi/3} 1 \, dx - \int_{0}^{\pi/3} \cos^{2}x \, dx$$
 M1
$$\int_{0}^{\pi/3} \sin^{2}x \, dx = 0.3070$$
 (f.t. candidate's answer to (a)) A1

Note: Answer only with no working shown earns 0 marks

2. (a) e.g.
$$\theta = \pi/2$$
, $\phi = \pi$
 $\sin(\theta + \phi) = -1$ (choice of θ , ϕ and one correct evaluation) B1
 $\sin \theta + \sin \phi = 1$ (both evaluations correct but different) B1
(b) $\sec^2 \theta + 8 = 4(\sec^2 \theta - 1) + 5 \sec \theta$.

(correct use of $\tan^2\theta = \sec^2\theta - 1$) M1 An attempt to collect terms, form and solve quadratic equation in $\sec \theta$, either by using the quadratic formula or by getting the expression into the form $(a \sec \theta + b)(c \sec \theta + d)$, with $a \times c =$ candidate's coefficient of $\sec^2\theta$ and $b \times d =$ candidate's constant m1 $3 \sec^2\theta + 5 \sec \theta - 12 = 0 \Rightarrow (3 \sec \theta - 4)(\sec \theta + 3) = 0$

$$\Rightarrow \sec \theta = \frac{4}{3}, \sec \theta = -3$$

$$\Rightarrow \cos \theta = \frac{3}{3}, \cos \theta = -\frac{1}{3}$$

$$\theta = 41.41^{\circ}, 318.59^{\circ}$$
B1
$$\theta = 109.47^{\circ}, 250.53^{\circ}$$
B1 B1 B1

Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range. $\cos \theta = +, -, \text{ f.t. for 3 marks}, \cos \theta = -, -, \text{ f.t. for 2 marks} \cos \theta = +, +, \text{ f.t. for 1 mark}$

3. (a) (i) candidate's x-derivative =
$$6t$$
, candidate's y-derivative = $6t^5 - 12t^2$ (at least two of the three terms correct) B1
$$\frac{dy}{dx} = \frac{\text{candidate's y-derivative}}{\text{dx candidate's x-derivative}}$$

$$\frac{dy}{dx} = \frac{6t^5 - 12t^2}{6t}$$
(c.a.o.) A1

(ii)
$$\frac{6t^5 - 12t^2}{6t} = \frac{7}{2}$$
 (f.t. candidate's expression from (i)) M1
$$2t^4 - 4t - 7 = 0$$
(convincing) A1

(b)
$$f(t) = 2t^4 - 4t - 7$$

An attempt to check values or signs of $f(t)$ at $t = 1$, $t = 2$ M1
 $f(1) = -9 < 0$, $f(2) = 17 > 0$
Change of sign $\Rightarrow f(t) = 0$ has root in $(1, 2)$ A1
 $t_0 = 1 \cdot 6$
 $t_1 = 1.608861654$ (t_1 correct, at least 5 places after the point) B1
 $t_2 = 1.609924568$
 $t_3 = 1.610051919$
 $t_4 = 1.610067175 = 1.61007$ (t_4 correct to 5 decimal places) B1
An attempt to check values or signs of $f(t)$ at $t = 1.610065$,
 $t = 1.610075$ M1
 $f(1.610065) = -1.25 \times 10^{-4} < 0$, $f(1.610075) = 1.69 \times 10^{-4} > 0$ A1
Change of sign $\Rightarrow \alpha = 1.61007$ correct to five decimal places

Note: 'Change of sign' must appear at least once.

4.
$$\underline{d}(x^2y^2) = x^2 \times 2y\underline{dy} + 2x \times y^2$$

$$\underline{d}(2y^3) = 6y^2 \times \underline{dy}$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^3 - 2$$

$$\underline{d}(x^4 - 2x + 6) = 4x^4 - 2x + 6$$

$$\underline{d}(x^4 - 2x + 6) = 4x^4 - 2x + 6$$

$$\underline{d}(x^4 - 2x + 6) = 4x^4 - 2x + 6$$

$$\underline{d}$$

5. (a)
$$\frac{dy}{dx} = \frac{4}{1 + (4x)^2}$$
 or $\frac{1}{1 + (4x)^2}$ or $\frac{4}{1 + 4x^2}$ M1
 $\frac{dy}{dx} = \frac{4}{1 + 16x^2}$ A1

(b)
$$\frac{dy}{dx} = e^{x^3} \times f(x) \qquad (f(x) \neq 1)$$

$$\frac{dy}{dx} = 3x^2 \times e^{x^3}$$

$$dx$$
A1

(c)
$$\frac{dy}{dx} = x^5 \times f(x) + \ln x \times g(x) \qquad (f(x), g(x) \neq 1) \qquad M1$$

$$\frac{dy}{dx} = x^5 \times f(x) + \ln x \times g(x) \qquad (either f(x) = 1/x \text{ or } g(x) = 5x^4) \qquad A1$$

$$\frac{dy}{dx} = x^4 + 5x^4 \times \ln x \qquad (c.a.o.) A1$$

(d)
$$\frac{dy}{dx} = \frac{(5 - 4x^2) \times f(x) - (3 - 2x^2) \times g(x)}{(5 - 4x^2)^2} \qquad (f(x), g(x) \neq 1) \qquad M1$$

$$\frac{dy}{dx} = \frac{(5 - 4x^2) \times f(x) - (3 - 2x^2) \times g(x)}{(5 - 4x^2)^2}$$

$$(either f(x) = -4x \text{ or } g(x) = -8x) \qquad A1$$

$$\frac{dy}{dx} = \frac{4x}{(5 - 4x^2)^2} \qquad (c.a.o.) A1$$

6. (a) (i)
$$\int \sin(x/4) dx = k \times \cos(x/4) + c \quad (k = -1, 4, -4, -\frac{1}{4}) \qquad M1$$

$$\int \sin(x/4) dx = -4 \times \cos(x/4) + c \qquad A1$$
(ii)
$$\int e^{2x/3} dx = k \times e^{2x/3} + c \qquad (k = 1, \frac{2}{3}, \frac{3}{2}) \qquad M1$$

$$\int e^{2x/3} dx = \frac{3}{2} \times e^{2x/3} + c \qquad A1$$
(iii)
$$\int \frac{7}{8x - 2} dx = k \times 7 \times \ln|8x - 2| + c \qquad (k = 1, 8, \frac{1}{8}) \qquad M1$$

$$\int \frac{7}{8x - 2} dx = \frac{1}{8} \times 7 \times \ln|8x - 2| + c \qquad A1$$

Note: The omission of the constant of integration is only penalised once.

(b)
$$\int_{0}^{1} (5x+4)^{-1/2} dx = k \times \frac{(5x+4)^{1/2}}{1/2}$$
 (k = 1, 5, \frac{1}{5}) M1

$$\int (5x+4)^{-1/2} dx = k \times \underbrace{(5x+4)^{1/2}}_{1/2} \qquad (k=1, 5, \frac{1}{5}) \qquad M1$$

$$\int_{1}^{9} 3 \times (5x+4)^{-1/2} dx = \left[3 \times \frac{1}{5} \times \underbrace{(5x+4)^{1/2}}_{1/2} \right]_{1}^{9} \qquad A1$$

A correct method for substitution of limits in an expression of the form $m \times (5x + 4)^{1/2}$ M1

$$\int_{1}^{9} 3 \times (5x+4)^{-1/2} dx = \frac{42}{5} - \frac{18}{5} = \frac{24}{5} = 4.8$$

(f.t. only for solutions of 24 and 120 from k = 1, 5 respectively) **A**1

Note: Answer only with no working shown earns 0 marks

7. (a) Trying to solve either $4x - 5 \ge 3$ or $4x - 5 \le -3$ M1

 $4x - 5 \ge 3 \Rightarrow x \ge 2$ $4x - 5 \le -3 \Rightarrow x \le \frac{1}{2}$ (solving both inequalities correctly) A1

Required range: $x \le 1/2$ or $x \ge 2$ (f.t. one slip) A1

Alternative mark scheme

 $(4x-5)^2 \ge 9$ (forming and trying to solve quadratic) M1

Critical values $x = \frac{1}{2}$ and x = 2A1

Required range: $x \le 1/2$ or $x \ge 2$ (f.t. one slip) A1

(b)
$$(3|x|+1)^{1/3} = 4 \Rightarrow 3|x|+1 = 4^3$$
 M1

A1

8. (a)

Correct shape, including the fact that the x-axis is an asymptote for

$$y = f(x)$$
 at $-\infty$

$$y = f(x)$$
 cuts y-axis at $(0, 1)$

(b) (i)

Correct shape, including the fact that y = -4 is an asymptote for y = f(3x) - 4 at $-\infty$

(ii)
$$y = f(3x) - 4$$
 at cuts y-axis at $(0, -3)$ B1

(iii)
$$e^{3x} = 4 \Rightarrow 3x = \ln 4$$
 M1
 $x = 0.462$ A1

Note: Answer only with no working shown earns M0 A0

9. (a)
$$y = 3 - \frac{1}{\sqrt{x - 2}} \Rightarrow 3 \pm y = \pm \frac{1}{\sqrt{x - 2}}$$
 (separating variables) M1
 $x - 2 = \frac{1}{(3 \pm y)^2}$ or $\frac{1}{(y \pm 3)^2}$ m1
 $x = 2 + \frac{1}{(3 - y)^2}$ (c.a.o.) A1
 $f^{-1}(x) = 2 + \frac{1}{(3 - x)^2}$ (f.t. one slip) A1

(b)
$$D(f^{-1}) = [2.5, 3)$$

 $[2.5]$ B1
3) B1

- **10.** (a) $R(f) = [3 + k, \infty)$ B1
 - (b) $3+k \ge -2$ M1 $k \ge -5$ (\Rightarrow least value of k is -5) (f.t. candidate's R(f) provided it is of form $[a, \infty)$ A1
 - (c) (i) $gf(x) = (3x + k)^2 6$ B1
 - (ii) $(3 \times 2 + k)^2 6 = 3$ (substituting 2 for x in candidate's expression for gf(x)and putting equal to 3) M1 Either $k^2 + 12k + 27 = 0$ or $(6 + k)^2 = 9$ (c.a.o.) A1 k = -3, -9 (f.t. candidate's quadratic in k) A1 k = -3 (c.a.o.) A1