Mathematics S1 January 2014

Solutions and Mark Scheme

Final Version

Ques	Solution	Mark	Notes
1(a)(i)	$P(A \cap B) = P(B)P(A \mid B)$	M1	Award M1 for using formula
	= 0.08	A1	
(ii) (b)	$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$ = 0.16 Considering any valid expression, eg $P(A \cap B) > 0$, $P(A B) > 0$, $P(B A) > 0$, $P(A \cup B) < P(A) + P(B)$, the events are not mutually exclusive	M1 A1 B1	Award M1 for using formula FT their $P(A \cap B)$ unless independence assumed FT previous work Conclusion must be justified
2(a)			
	P(1 of each) = $\frac{6}{12} \times \frac{4}{11} \times \frac{2}{10} \times 6 \text{ or } \begin{pmatrix} 6\\1 \end{pmatrix} \times \begin{pmatrix} 4\\1 \end{pmatrix} \times \begin{pmatrix} 2\\1 \end{pmatrix} \div \begin{pmatrix} 12\\3 \end{pmatrix}$	M1A1	M1A0 if 6 omitted or incorrect factor used
	$=\frac{12}{77}$ (0.218)	A1	
(b)	$P(3 \text{ Els}) = \frac{6}{12} \times \frac{5}{11} \times \frac{4}{10} \text{ or } \begin{pmatrix} 6\\ 3 \end{pmatrix} \div \begin{pmatrix} 12\\ 3 \end{pmatrix}$	M1	
	$=\frac{1}{11}$ (0.091)	A1	
(c)	P(3 Gala) = $\frac{4}{12} \times \frac{3}{11} \times \frac{2}{10}$ or $\begin{pmatrix} 4\\ 3 \end{pmatrix} \div \begin{pmatrix} 12\\ 3 \end{pmatrix}$	B1	
	$=\frac{1}{55}$ (0.018) si		
	P(3 the same) = $\frac{1}{11} + \frac{1}{55} = \frac{6}{55}$ (0.109)	M1A1	FT previous values
3 (a)	$P(C \text{ wins } 1^{st} \text{ shot}) = P(R \text{ misses})P(C \text{ hits})$	M1	
	$= 0.7 \times 0.4$	A1	
	= 0.28		
(b)	$P(C \text{ wins } 2^{nd} \text{ shot}) = 0.7 \times 0.6 \times 0.7 \times 0.4$	M1	
(-)	$= 0.42 \times 0.28 (k = 0.42)$	Al	
(C)	$P(C \text{ wins}) = 0.28 + 0.42 \times 0.28 + \dots$	IVII	FT their value of k if between 0
	$=\frac{0.28}{1000000000000000000000000000000000000$	Δ1	and 1
	1-0.42		
	= 0.483 (14/29)	A1	

Ques	Solution	Mark	Notes
4(a)(i)	$P(X=6) = {\binom{20}{6}} \times 0.2^{6} \times 0.8^{14} = 0.109$	M1A1	M0 if no working shown
(ii)	Prob = 0.9900 - 0.0692 or 0.9308 - 0.0100 $= 0.921 cao$	B1B1 B1	B0B0B0 if no working shown
(b)	B(200,0.0123) is approx Po(2.46)	B1	
	$P(Y=3) = \frac{e^{-2.46} \times 2.46^3}{3!} = 0.212$	M1A1	M0 if no working shown Do not accept use of tables
5(a)	$P(2G) = \frac{1}{3} \times 1 + \frac{1}{3} \times \frac{3}{4} \times \frac{2}{3} + \frac{1}{3} \times \frac{2}{4} \times \frac{1}{3}$	M1A3	M1 Use of Law of Total Prob (Accept tree diagram)
	$=\frac{5}{9}$ cao	A1	
(b)	$P(A 2G) = \frac{1/3}{5/9}$	B1B1	FT denominator from (a) B1 num, B1 denom
	$=\frac{5}{5}$ cao	B1	
6(a)(i)	X is B(10,0.75) si E(X) = 7.5.	B1 B1	
	Var(X) = 1.875	B1	
(ii)	Attempt to evaluate either $P(X = 7)$ or $P(X = 8)$ P(X = 7) = 0.250; $P(X = 8) = 0.282So try P(X = 9) = 0.188$	M1 A1 A1	
	Most likely value $= 8$	A1	Award the final A1 only if the previous A1 was awarded
(b)(i) (ii)	W = 10X - 2(10 - X) = 12X - 20 E(W) = 12 × 7.5 - 20 = 70 Var(W) = 12 ² × Var(X) = 270	B1 B1 M1A1	FT their mean and variance from (a) and FT their derived values of a and b provided that $a \neq 1$ and $b \neq 0$
7(a)	$E(X) = 0.1 \times 1 + 0.2 \times 2 + 0.3 \times 3 + 0.1 \times 4 + 0.3 \times 5$	M1	and $b \neq 0$
	= 3.3 $E(X^{2}) = 0.1 \times 1 + 0.2 \times 4 + 0.3 \times 9 + 0.1 \times 16$ $+ 0.3 \times 25 (12.7)$	A1 B1	ET their $E(X^2)$
	$Var(X) = 12.7 - 3.3^2 = 1.81$	M1A1	$\Gamma I \text{ then } L(X)$
(b)(1)	The possibilities are (1,1,2); (1,2,1); (2,1,1) $P(S=4)=0.1^2 \times 0.2 \times 3=0.006$	B1 M1A1	Award M1 if only one correct
(ii)	The only extra possibility is $(1,1,1)$ so $P(S=3) = 0.1^3$ (0.001)	B1 B1	1
	Therefore $P(S \le 4) = 0.007$	B 1	FT from (b)(i) if M1 awarded

Ques	Solution	Mark	Notes
8(a)(i) (ii)	Prob = $\frac{e^{-15} \times 15^{12}}{12!}$ or 0.2676 - 0.1848 = 0.083 or 0.8152 - 0.7324 We require $P(X \ge 20)$ = 1 - 0.8752 = 0.1248	M1 A1 M1 A1	M0 if no working shown Award M1A0 for use of adjacent row or column
(b)	(Using tables, the number required is) 25	M1A1	Award M1A0 for 24 or 26
9(a)(i)	Using $F(2) = 1$	M1	
	1 = k(8-2) k = 1/6 (convincing)	A1	
(ii)	$P(1.25 \le X \le 1.75) = F(1.75) - F(1.25)$ = 0.6015 0.1171 si = 0.484 (31/64)	M1 A1 A1	
(b)(i)	$f(x) = \frac{d}{dx} \left(\frac{x^3 - x}{6} \right)$	M1	
	$=\frac{3x^2-1}{6}$	A1	
(ii)	$E(X) = \int_{1}^{2} x \left(\frac{3x^{2} - 1}{6} \right) dx$	M1A1	M1 for the integral of <i>xf</i> (<i>x</i>), A1 for completely correct with or without limits FT on their <i>f</i> if previous M1
	$= \left[\frac{x^4}{8} - \frac{x^2}{12}\right]_1^2$	A1	awarded Limits must appear here if not before M0 if no working shown
	= 1.625 cao		