

PROOF BY CONTRADICTION

A2 Unit 3: Pure Mathematics B

WJEC past paper questions: 2008 - 2017

Total marks available 32 (approximately 40 minutes)

Prove by contradiction the following proposition.

When x is real and positive,

$$x + \frac{49}{r} \ge 14$$
.

The first line of the proof is given below.

Assume that there is a positive and real value of x such that

$$x + \frac{49}{x} < 14$$
 [4]

(Summer 08)

2. Complete the following proof by contradiction to show that $\sqrt{3}$ is irrational.

Assume that $\sqrt{3}$ is rational. Then $\sqrt{3}$ may be written in the form $\frac{a}{b}$ where a and b are integers having no common factors.

∴
$$a^2 = 3b^2$$
.
∴ a^2 has a factor 3.

 \therefore a has a factor 3 so that a = 3k, where k is an integer. [4]

(Summer 09)

Prove by contradiction the following proposition. 3.

If a, b are positive real numbers, then $a + b \ge 2\sqrt{ab}$.

The first line of the proof is given below.

Assume that positive real numbers a, b exist such that $a + b < 2\sqrt{ab}$. [3]

(Summer 10)

Prove by contradiction the following proposition.

When x is real and positive,

$$4x + \frac{9}{x} \geqslant 12.$$

The first line of the proof is given below.

Assume that there is a positive and real value of x such that

$$4x + \frac{9}{x} < 12. ag{3}$$

(Summer 11)

Complete the following proof by contradiction to show that $\sqrt{5}$ is irrational.

Assume that $\sqrt{5}$ is rational. Then $\sqrt{5}$ may be written in the form $\frac{a}{b}$, where a, b are integers having no common factors.

- $\therefore a^2 = 5b^2.$ $\therefore a^2 \text{ has a factor 5.}$
- \therefore a has a factor 5 so that a = 5k, where k is an integer.

(Summer 12)

[3]

Prove by contradiction the following proposition.

When x is real,

$$(5x-3)^2+1 \ge (3x-1)^2$$
.

The first line of the proof is given below.

Assume that there is a real value of x such that

$$(5x-3)^2 + 1 < (3x-1)^2.$$
 [3]

(Summer 13)

Complete the following proof by contradiction to show that

$$\sin\theta + \cos\theta \le \sqrt{2}$$

for all values of θ .

Assume that there is a value of θ for which $\sin \theta + \cos \theta > \sqrt{2}$. Then squaring both sides, we have:

[3]

(Summer 14)

Prove by contradiction the following proposition.

If a and b are odd integers such that 4 is a factor of a - b, then 4 is **not** a factor of a + b.

The first lines of the proof are given below.

Assume that 4 is a factor of
$$a + b$$
.
Then there exists an integer c such that $a + b = 4c$.

[3]

(Summer 15)

Prove by contradiction the following proposition.

When x is real and $x \neq 0$,

$$\left|x + \frac{1}{x}\right| \ge 2.$$

The first two lines of the proof are given below.

Assume that there is a real value of x such that

$$x + \frac{1}{x} < 2.$$

Then squaring both sides, we have:

[3]

(Summer 16)

10. Complete the following proof by contradiction to show that $\sqrt{7}$ is irrational.

Assume that $\sqrt{7}$ is rational. Then $\sqrt{7}$ may be written in the form $\frac{a}{b}$,

where a, b are integers having no factors in common.

$$\therefore a^2 = 7b^2.$$

$$\therefore a^2$$
 has a factor 7.

$$\therefore$$
 a has a factor 7 so that $a = 7k$, where k is an integer.

[3]

(Summer 17)